Abstract

In spite of widespread applications of nano-photosensitizers, poor tumor penetration and severe hypoxia in the tumor microenvironment (TME) always result in an undesirable therapeutic outcome of photodynamic therapy (PDT). Herein, a biocompatible agarose-based hydrogel incorporated with sodium humate (SH), manganese oxide (MnO2) and chlorin e6 (Ce6) was synthesized as agarose@SH/MnO2/Ce6 through a "co-trapped" strategy during a sol-gel process and employed for combined photothermal therapy (PTT) and enhanced PDT. NIR-induced local hyperthermia is responsible for not only activating Ce6 release, but also triggering the catalytic decomposition of H2O2 mediated by MnO2 to relieve hypoxia. Such a hybrid hydrogel can realize deep tissue penetration through intratumoral injection, and exhibit remarkable tumor-site retention. Moreover, programmed laser irradiation led to an extremely high tumor growth inhibition rate of 93.8% in virtue of enhanced PTT/PDT. In addition, ultralow systemic toxicity caused by the hybrid hydrogel was further demonstrated in vivo. This reliable and eco-friendly hydrogel paves the way for the development of smart gel-based biomaterials, which respond to both exogenous and endogenous stimuli, towards the management of cancer and other major diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.