Abstract
Dynamic regulation of nanoparticles in a controllable manner has great potential in various areas. Compared to the individual nanoparticles, the assembled nanoparticles exhibit superior properties and functions, which can be applied to achieve desirable performances. Here, a pH-responsive i-motif DNA-mediated strategy to tailor the programmable behaviors of erbium-based rare-earth nanoparticles (ErNPs) decorated copper doped metal-organic framework (CPM) nanohybrids (ECPM) under physiological conditions is reported. Within the acidic tumor microenvironment, the i-motif DNA strands are able to form quadruplex structures, resulting in the assembly of nanohybrids and selective tumor accumulation, which further amplify the ErNPs downconversion emission (1550nm) signal for imaging. Meanwhile, the ECPM matrix acts as a near-infrared (NIR) photon-activated reactive oxygen species (ROS) amplifier through the singlet oxygen generation of the matrix in combination with its ability of intracellular glutathione depletion upon irradiation. In short, this work displays a classical example of engineering of nanoparticles, which will manifest the importance of developing nanohybrids with structural programmability in biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.