Abstract

Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA − mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call