Abstract
The chorda tympani (CT) and glossopharyngeal (GL) nerves of several mammalian species respond differently to umami substances (US) such as monosodium glutamate (MSG), disodium 5'-inosinate (IMP) and disodium 5'-guanylate (GMP). In mice and rhesus monkeys, responses to US are greater in the GL than the CT nerve, with the GL nerve containing larger numbers of MSG-sensitive fibers. Gurmarin, a sweet response inhibitor, suppresses the mouse CT responses to the mixture of MSG and IMP to approximately 65% of control levels but not to the metabotropic and ionotropic glutamate agonists 2-amino-4-phophonobutyrate and N-methyl-D-aspartate. Gurmarin does not inhibit any taste responses in the GL. In mice, CT responses to MSG may be masked by their greater sensitivity to sodium ions. Calcium imaging studies demonstrate that some mouse taste cells isolated from the fungiform papilla innervated by the CT respond selectively (as indicated by a rise in intracellular Ca(2+) concentrations) to MSG and/or IMP or GMP. These MSG responses are not suppressed notably by reducing the Ca(2+) concentration of the stimulus solution, suggesting that the observed Ca(2+) release is from intracellular stores. Measurements of second messengers in the mouse fungiform papilla have revealed consistently that MSG elicits increases in both inositol 1,4,5-trisphosphate and adenosine 3', 5'-cyclic monophosphate levels. Together, these results suggest that US may stimulate two different transduction mechanisms in the fungiform papilla. They also suggest that gurmarin-insensitive components of receptors for US, including metabotropic and ionotropic glutamate receptors, may be commonly involved in transduction for umami taste in taste cells on both anterior and posterior parts of the tongue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.