Abstract

How the visual system reconstructs global patterns of motion from components is an important issue in vision. Conventional studies using plaids have shown that approximately one-third of neurons in cortical area MT respond to one-dimensional (1D) components of a moving pattern (component cells), whereas another third responds to the global two-dimensional (2D) motion of a pattern (pattern cells). Conversely, studies using spots of light or random dots that contain multiple orientations have seldom reported directional tuning that is consistent with 1D motion preference. To bridge the gap between these studies, we recorded from isolated neurons in macaque area MT and measured tuning for velocity (direction and speed) using random dot stimuli. We used the "intersection of constraints" principle to classify our population into pattern-direction-selective (PDS) neurons and component-direction-selective (CDS) neurons. We found a larger proportion of PDS cells (68%) and a smaller proportion of CDS cells (8%) compared with prior studies using plaids. We further compared velocity tuning, measured using random dot stimuli, with direction tuning, measured using plaids. Although there was a correlation between the degree of preference for 2D over 1D motion of the two measurements, tuning seemed to prefer 2D motion using random dot stimuli. Modeling analyses suggest that integration across orientations contributes to the 2D motion preference of both dots and plaids, but opponent inhibition mainly contributes to the 2D motion preference of plaids. We conclude that MT neurons become more capable of identifying a particular 2D velocity when stimuli contain multiple orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call