Abstract

We studied the respiratory and circulatory effects in six healthy supine volunteers of continuous negative-pressure breathing (CNPB) at -15 and -30 cmH2O at rest and during dynamic leg exercies at 50% of individual working capacity. CNPB had no significant effects on respiratory minute volume, tidal volume, or arterial carbon dioxide tension. Mean arterial pressure remained essentially unchanged both at rest and during exercise, signifying that the reductions in intrathoracic pressure caused corresponding increases in left ventricular afterload. Nevertheless, cardiac output increased significantly in both conditions, causing reductions of mean central venous pressure that were considerably greater during exercise than at rest. These responses were reflected by increments in left ventricular work, amounting to 24 and 20% at rest and during exercise, respectively, at -30 cmH2O. We conclude that in CNPB at rest the increased activity of the left ventricle with associated juxtathoracic venous collapse protects the right heart and pulmonary circulation from congestion and that it does so even more effectively during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call