Abstract

Arsenic (As)-contaminated rice paddy fields are spreading globally, and thus, rice grains with low As accumulation at a safe level for consumption is profoundly needed. Rice is highly susceptible to As accumulation, and the responses to As vary among rice varieties. Here, combinations of the AsIII-oxidizing bacteria Pseudomonas stutzeri strains 4.25, 4.27, or 4.44 and Cupriavidus taiwanensis KKU2500-3 were investigated with respect to their responses to As toxicity and rice growth promotion during the early growth stage. All bacterial strains enhanced antioxidant enzyme activities, including SOD, CAT, APX, GPX, and GR, under As stress in vitro. Uninoculated and coinoculated rice seedlings of three rice varieties (KDML105, RD6, RD10) were cultivated in hydroponic solution without and with a combination of toxic AsIII and less toxic AsV for 30 days. Compared with uninoculated seedlings, the inoculated seedlings showed higher growth parameters and lower As contents in roots, shoots and throughout the plants. The bioconcentration factor (BCF) and translocation factor were reduced in inoculated seedlings. The effective response of rice to As toxicity influenced by bacteria was highest in KDML105, followed by RD6 and RD10. The root sulfide content was correlated with As accumulation in roots, shoots, and total seedlings and the BCFs. P. stutzeri 4.44 and C. taiwanensis KKU2500-3 were the most promising combinations for application in KDML105 cultivation under As-contaminated conditions. Understanding the basic response of rice coinoculated with effective bacteria at the early stage will provide guidelines for rice cultivation under As conditions at other scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.