Abstract

In decerebrate, paralyzed cats ventilated with a cycle-triggered pump, the discharges of the recurrent laryngeal (whole nerve or single fibers) and phrenic nerves, and the changes produced by pulmonary afferent inputs (lung inflation), were compared. When lung inflation was in phase neural inspiration, four types of laryngeal fiber activities were observed: (a) phasic-inspiratory; (b) tonic-inspiratory; (c) expiratory-inspiratory; (d) early-expiratory. The firing patterns during inspiration were plateau-like, whereas the phrenic pattern was augmenting. When inflation was withheld, the plateau patterns usually became augmenting, indicating inhibition of laryngeal inspiratory activity by pulmonary afferents. Secondary effects of withholding inflation were: (a) increases of early-expiratory activity (both whole nerve and individual fiber), indicating increased post-inhibitory rebound excitation; (b) decreased activity of tonic-inspiratory and expiratory-inspiratory fibers during early neural expiration, indicating increased inhibition by early-expiratory neurons. The discharge patterns of different types of laryngeal motoneuron, as well as their changes with inflation, are interpreted in relation to the function of regulating airway resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call