Abstract
The Loess Plateau is a fragile ecological zone that is sensitive to climate change. The response, adaptation, and feedback of tree growth in forest ecosystems to global warming and CO2 enrichment are urgent scientific issues. Intrinsic water use efficiency (iWUE) is an important indicator for understanding forest ecosystem adaptability to climate change and CO2 enrichment. In this study, tree-ring width, tree-ring stable carbon isotope ratio (δ13C), and iWUE of P. tabulaeformis Carr. were established. Climate response analysis showed that temperature was the main limiting factor affecting radial tree growth and that relative humidity significantly affected the stable carbon isotope fractionation of tree rings. During 1645–2011, the iWUE increased by 27.1%. The responses of iWUE to climate factors and atmospheric CO2 concentrations (Ca) showed that the long-term variation in iWUE was affected by Ca, which could explain 69% of iWUE variation, and temperature was the main factor causing iWUE interannual variation. The ecosystem of P. tabulaeformis showed a positive response to rising Ca, as its carbon sequestration capacity increased. In response to global warming and CO2 enrichment, rising Ca promoted increases in iWUE but ultimately failed to offset the negative impact of warming on tree growth in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.