Abstract

The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: −log10 (p-value) = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. Conclusion: this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity.

Highlights

  • Brown adipose tissue (BAT) is a thermogenic organ and consumes lipids and carbohydrates

  • The top 4 altered canonical pathways in BAT responding to cold stimulation were insulin receptor signaling, protein kinase A signaling, PI3K/AKT signaling, and ERK/MAPK signaling

  • In the insulin receptor signaling pathway with the documented 142 genes, 42 transcripts (29.6%) significantly responded to 4 hours of cold exposure

Read more

Summary

Introduction

Brown adipose tissue (BAT) is a thermogenic organ and consumes lipids and carbohydrates. The unique energy consumption of stimulated BAT might be useful in controlling obesity and diabetes by modification of the body’s energy balance and lead to more expenditure of energy and less deposition of fat. Over a decade ago functioning BAT was unexpectedly identified in adult humans by fluodeoxyglucose positron emission tomography (18F-FDG PET), a modern functional imaging modality [3,4,5]. Adults without FDG-avid brown adipose tissue on PET imaging had a higher risk of abnormally increased glucose levels than patients with FDG-avid brown adipose tissue [7]. This finding leads to the hypothesis that purposely stimulating BAT could have a role in controlling obesity and diabetes

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call