Abstract

The effects of flooding calcareous soil on physiology and growth have been studied for several subtropical and tropical fruit crops including avocado (Persea americana Mill.), mango (Mangifera indica L.), carambola (Averrhoa carambola L.), and several Annona species. In calcareous soils that have a high pH, short-term flooding can actually be beneficial to subtropical and tropical fruit crops by increasing the solubility of particle-bound nutrient elements such as Fe, Mn and Mg due to flooding-induced decreases in soil pH. Additionally, flooding reduces the redox potential in the soil, resulting in Fe being reduced from Fe3+ to Fe2+, which is the cation metabolized by plants. As with other woody perennial crops, one of the early physiological responses of subtropical and tropical fruit trees to flooding is a decrease in stomatal conductance and net CO2 assimilation. If the flooding period is prolonged, lack of O2 (anoxia) in the soil results in a reduction of root and shoot growth, wilting, decreased nutrient uptake and eventual death. The flooding duration required to cause tree mortality varies among species, among cultivars within species, and with environmental conditions, particularly temperature. Several tropical and subtropical fruit crops have anatomical or morphological adaptations to tolerate prolonged flooding, such as development of hypertrophied stem lenticels, adventitious rooting or formation of porous aerenchyma tissue. For grafted trees, flooding-tolerance is conferred by the rootstock and not the scion. Therefore there is a possibility to increase flood tolerance of subtropical and tropical fruit crops by identifying or developing flood-tolerant rootstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call