Abstract

A broad range of human diseases are associated with bacterial infections, often initiated by specific adhesion of a bacterium to the target environment. Despite the significant role of bacterial adhesion in human infectious diseases, details and mechanisms of bacterial adhesion have remained elusive. Herein, we study the physical interactions between Staphylococcus aureus, a type of micro-organism relevant to infections associated with medical implants, and nanocrystalline (nc) nickel nanostructures with various columnar features, including solid core, hollow, x-shaped and c-shaped pillars. Scanning electron microscopy results show the tendency of these bacterial cells to attach to the nickel nanostructures. Moreover, unique single bacterium attachment characteristics were observed on nickel nanostructures with dimensions comparable to the size of a single bacterium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.