Abstract
Background: Microorganisms are important regulators of soil phosphorus cycling and phosphorus availability in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations. However, the effects of thinning on soil phosphorus cycling by microbes in C. lanceolata plantations remain unclear. Methods: We performed a metagenomic sequencing analysis to investigate how thinning intensities (weak, moderate, and heavy) alter phosphorus cycling related microbial genes and their regulatory effects on soil phosphorus availability in C. lanceolata plantations. Results: Following heavy thinning, the contents of available and labile phosphorus increased by 13.8% and 36.9%, respectively, compared to moderate and weak thinning. Moreover, the relative abundance of genes associated with inorganic phosphorus solubilization increased significantly with the increase in thinning intensity, whereas genes associated with phosphorus uptake and transport significantly decreased. The metagenomic analysis results indicate that Acidobacteria (47.6%–53.5%), Proteobacteria (17.9%–19.1%), and Actinobacteria (11.7%–12.8%) are the major contributors to the functional phosphorus cycling genes in the soil. The random forest analysis results suggested that gcd, plc, phoN, ugpA, and phoR were the critical genes involved in the transformation and use of phosphorus, which in turn increased soil phosphorus availability. Structural equation modeling revealed that soil pH was the primary factor influencing changes in functional genes associated with phosphorus cycling in C. lanceolata plantations. Specifically, soil pH (ranging from 4.3 to 4.9) were positively correlated with genes involved in inorganic phosphate solubilization and organic phosphate mineralization, while negatively correlated with genes related to phosphorus uptake and transport. Conclusions: Taken together, our results demonstrate that the enhanced microbe-mediated mineralization of organic phosphorus and solubilization of inorganic phosphorus are suppressed when uptake and transportation are the mechanisms responsible for the increased soil phosphorus availability under appropriate thinning intensities. Changes in the soil microbial community and phosphorus cycling genes in response to different thinning intensities may maintain soil functionality and nutrient balance in C. lanceolata plantations. These findings contribute to a better understanding of the mechanisms underlying the microbial mediation of phosphorus cycling in the soil of C. lanceolata plantations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.