Abstract

Bamboo forests are one of the most important forest resources in subtropical China. A pure, single-layer bamboo forest is considered an optimal habitat for intercropping medicinal herbs. Soil microorganisms have an important role in various ecological processes and respond quickly to environmental changes. However, changes in soil nutrients and microbial communities associated with agroforestry cultivation methods remain poorly documented. In the present study, a pure moso bamboo (Phyllostachys edulis) forest (Con) and three adjacent moso bamboo-based agroforestry (BAF) systems (moso bamboo-Paris polyphylla (BP), moso bamboo-Tetrastigma hemsleyanum (BT) and moso bamboo-Bletilla striata (BB)) were selected; and their soil chemical properties and bacterial communities were studied and compared to evaluate the effects of agroforestry on soil bacterial communities and the relationship between soil properties and bacterial communities in BAF systems. Results showed that compared with soils under the Con, soils under the BAF systems had more (p < 0.05) soil organic carbon (SOC) and available nitrogen (AN) but lower (p < 0.05) pH and available potassium (AK). In addition, compared with the Con system, the BB and BT systems had significantly greater (p < 0.05) available phosphorus (AP). Compared with that in the Con system, the Shannon index in the BAF systems was significantly greater (p < 0.05), but the Chao1 index not different. On the basis of relative abundance values, compared with the Con soils, the BAF soils had a significantly greater abundance of (p < 0.05) Bacteroidetes and Planctomyces but a significantly lower abundance of (p < 0.05) Verrucomicrobia, Gemmatimonadetes and Candidatus Xiphinematobacter. Moreover, compared with the Con system, the BB and BT systems had a greater (p < 0.05) abundance of Actinobacteria, Rhodoplanes, Candidatus Solibacter and Candidatus Koribacter. Redundancy analysis (RDA) revealed that soil pH, SOC and AP were significantly correlated with bacterial community composition. Results of this study suggest that intercropping medicinal herbs can result in soil acidification and potassium (K) depletion; thus, countermeasures such as applications of K fertilizer and alkaline soil amendments are necessary for BAF systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.