Abstract

Enhanced nitrogen (N) deposition has shown significant impacts on forest greenhouse gas emissions. Previous studies have suggested that Chinese forests may exhibit stronger N2O sources and dampened CH4 sinks under aggravated N saturation. To gain a common understanding of the N effects on forest N2O and CH4 fluxes, many have conducted global-scale meta-analyses. However, such effects have not been quantified particularly for China. Here, we present a meta-study of the N input effects on soil N2O emission and CH4 uptake in Chinese forests across climatic zones. The results suggest that enhanced N inputs significantly increase soil N2O emission (+115.8%) and decrease CH4 uptake (−13.4%). The mean effects were stronger for N2O emission and weaker for CH4 uptake in China compared with other global sites, despite being statistically insignificant. Subtropical forest soils have the highest emission factor (2.5%) and may respond rapidly to N inputs; in relatively N-limited temperate forests, N2O and CH4 fluxes are less sensitive to N inputs. Factors including forest type, N form and rate, as well as soil pH, may also govern the responses of N2O and CH4 fluxes. Our findings pinpoint the important role of Southern Chinese forests in the regional N2O and CH4 budgets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call