Abstract

Soil water is vital for sustaining semiarid ecosystems. However, data on soil moisture have unlikely been continuously collected for a long time (e.g., >50 years), let alone under various combinations of climates and livestock grazing intensities. The objective of this study was to formulate and parameterize an ecohydrological model for predicting long-term variability of soil moisture, taking a typical Eurasian grassland located in northeast China as the testbed. The parameters were determined by extensive literature review, field reconnaissance, laboratory analyses of soil and grass samples, and model calibration using daily soil temperatures and soil moistures measured at four depths from 2014 to 2017. The model, driven by the daily climate data from 1955 to 2017, performed well in reproducing the measurements. Across the assessment years of 1960 to 2017, the daily soil moistures were predicted to vary from 0.02 to 0.38. Overall, the soil moistures at a shallower depth were smaller but had a wider range than those at a deeper depth, with a largest mean and a widest range around the 30 cm depth. Regardless of the depths, the soil moistures pulsed in beginning March and plateaued from May to September. Livestock grazing was precited to reduce top 1.5-cm soil moistures but increase moistures of the beneath soils. The optimal grazing intensity was determined to be around 3.0 cattle ha−1, above which wind erosion would become a concern. The grazing impacts on soil moisture were found to monophonically decrease with increase of evapotranspiration or annual precipitation of larger than 220 mm. For the years with an annual precipitation of less than 220 mm, such grazing impacts either increased or decreased with increase of precipitation, depending on the relative magnitude of evapotranspiration. Climate change will diminish soil moisture pulses in early spring, likely intensifying soil erosion by wind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.