Abstract

In soil microbiology, there is a “paradox” of soil organic carbon (SOC) mineralization, which is that even though chloroform fumigation destroys majority of the soil microbial biomass, SOC mineralization continues at the same rate as in the non-fumigated soil during the incubation period. Soil microeukaryotes as important SOC decomposers, however, their community-level responses to chloroform fumigation are not well understood. Using the 18S rRNA gene amplicon sequencing, we analyzed the composition, diversity, and C-metabolic functions of a grassland soil and an arable soil microeukaryotic community in response to fumigation followed by a 30-day incubation. The grassland and arable soil microeukaryotic communities were dominated by the fungal Ascomycota (80.5–93.1% of the fungal sequences), followed by the protistan Cercozoa and Apicomplexa. In the arable soil fungal community, the predominance of the class Sordariomycetes was replaced by the class Eurotiomycetes after fumigation at days 7 and 30 of the incubation. Fumigation changed the microeukaryotic α-diversity in the grassland soil at days 0 and 7, and β-diversity in the arable soil at days 7 and 30. Network analysis indicated that after fumigation fungi were important groups closely related to other taxa. Most phylotypes (especially Sordariomycetes, Dothideomycetes, Coccidia, and uncultured Chytridiomycota) were inhibited, and only a few were positively stimulated by fumigation. Despite the inhibited Sordariomycetes, the fumigated communities mainly consisted of Eurotiomycetes and Sordariomycetes (21.9 and 36.5% relative frequency, respectively), which are able to produce hydrolytic enzymes associated with SOC mineralization. Our study suggests that fumigation not only decreases biomass size, but modulates the composition and diversity of the soil microeukaryotic communities, which are capable of driving SOC mineralization by release of hydrolytic enzymes during short-term fumigation-incubation.

Highlights

  • Soil microorganisms are the principal participants in most soil processes

  • The amount of microbial biomass C significantly decreased by approximately 70% in the grassland and arable soils during the incubation period, and it was significantly lower at day 30 compared to day 0 (Table 2)

  • Specific β-glucosidase activity in the grassland and arable soils was increased by fumigation by average 4.5 and 4.4-fold, respectively, and specific invertase activity by average 5.7 and 8.2-fold, respectively (Table 2)

Read more

Summary

Introduction

The determination of microbial biomass can facilitate our understanding of microbial ecological functions and the magnitude of certain processes, such as soil carbon (C) and nitrogen (N) mineralization (Fierer et al, 2009). Jenkinson and Powlson (1976) described a fumigation-incubation method to estimate the soil microbial biomass. Chloroform fumigation (fumigation) is a classic method used for determination of the soil microbial biomass. They proposed that, following fumigation, the extra CO2 evolved from the fumigated soil compared to the incubated but non-fumigated control soil during the first 10 days of incubation (termed Fumigation-incubation, FI) provides an estimate of the original soil microbial biomass (Jenkinson and Powlson, 1976). More analytically convenient, the fumigationextraction method to measure microbial biomass was developed from FI (e.g., Brookes et al, 1982, 1985; Vance et al, 1987; Wu et al, 1990)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call