Abstract

Climate warming and elevated CO2 can modify nutrient cycling mediated by enzymes in soils, especially in cold-limited ecosystems with a low availability of nutrients and a high temperature sensitivity of decomposition and mineralization. We estimated responses of soil extracellular enzyme activities (EEAs) to 6 years of soil warming and 9 years of CO2 enrichment at an Alpine treeline site. EEAs were measured in the litter (L), fermentation (F) and humified (H) horizons under Larix decidua and Pinus uncinata trees. Soil warming indirectly affected EEAs through altered soil moisture, fine root biomass, and C:N ratio of the organic horizons. Warming increased β-glucosidase and β-xylosidase activities in the F horizon but led to reduced laccase activity in the L horizon, probably caused by drying of the litter horizon associated with the treatment. In the H horizon, previous CO2 enrichment altered the activity of leucine amino peptidase, N-acetylglucosaminidase, and phosphatase. No interactive effects between warming and CO2 enrichment were detected. Warming affected the temperature sensitivity of β-xylosidase but not of the other enzymes. Altered EEAs after six years of soil warming indicate a sustained stimulation of carbon, nitrogen and nutrient cycling under climatic warming at the alpine treeline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.