Abstract

Plant water use characteristics and transpiration responses under dry conditions are considered essential for effective and sustainable ecosystem management in arid areas. This study was conducted to evaluate the response of shelterbelt stand transpiration to precipitation, soil drought and groundwater variations in an oasis-desert ecotone in the middle of the Heihe River Basin, China. Sap flow was measured in eight Gansu Poplar trees (Populus Gansuensis) with different diameter at breast height over three consecutive growing seasons (2012-2014). The groundwater evapotranspiration via plant use was estimated by the White method with diurnal water table fluctuations. The results showed that precipitation increased the stand transpiration but not statistically significant (paired t-test, p > 0.05). The recharge of soil water by irrigation caused stand transpiration acceleration significantly (t-test, p < 0.05). Stand transpiration and canopy conductance increased by 27% and 31%, respectively, when soil water conditions changed from dry to wet. Canopy conductance decreased logarithmically with vapor pressure deficit, while there was no apparent relationship between canopy conductance and solar radiation. The sensitivity of canopy conductance to vapor pressure deficit decreased under dry soil conditions. Groundwater evapotranspiration (0.6-7.1 mm day(-1)) was linearly correlated with stand transpiration (1.1-6.5 mm day(-1)) (R-2 = 0.71), and these two variables had similar variability. During the drought period, approximately 80% of total stand transpiration came from groundwater evapotranspiration. This study highlighted the critical role of irrigation and groundwater for shelterbelt, and might provide the basis for the development of water requirement schemes for shelterbelt growth in arid inland river basins. (C) 2015 Elsevier B.V. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.