Abstract

Abstract: In this paper, an analytical solution is presented to study the response of piezoelectric, transversely isotropic, functionally graded, and multilayered half spaces to uniform circular surface loadings (pressure or negative electric charge). The inhomogeneous material is exponentially graded in the vertical direction and can have multiple discrete layers. The propagator matrix method and cylindrical system of vector functions are used to first derive the solution in the transformed domain. In order to find the responses in the physicaldomain, which are expressed in one-dimensional infinite integrals of the Bessel function products, we introduced and adopted an adaptive Gauss quadrature. Two piezoelectric functionally graded half-space models are analyzed numerically: One is a functionally graded PZT4 half space, and the other a multilayered functionally graded half space with two different piezoelectric materials (PZT-4 and PZT-6B). The effect of different exponential factors of the functionally graded material on the field responses is clearly demonstrated. The difference of the responses between the two surface loading cases is also discussed via the numerical examples. The results should be particularly useful in the characterization of material properties using indentation tests, and could indirectly contribute to the design and manufacturing of piezoelectric functionally graded structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.