Abstract

The spatial distribution of plant-available mineral nutrients in forest soils is often highly heterogeneous. To test the hypothesis that local nutrient enrichment of soil leads to increased root proliferation in the nutrient-rich soil zone, we studied the effects of nutrient enrichment on the growth and nutrient concentrations of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) roots. Three-year-old seedlings were grown for 9 months in split-root containers filled with nutrient-poor forest mineral soil, with one side supplemented with additional mineral nutrients. Root dry weight and root length in Scots pine and Norway spruce were increased in the nutrient-supplemented soil compared with the nonsupplemented side, whereas root growth in Douglas-fir was unaffected by nutrient enrichment. Of the three species examined, Norway spruce exhibited the highest root and shoot growth and the highest nutrient demand. Specific root length (m g(-1)) and the number of root tips per unit root length were not affected by local nutrient addition in any of the species. Despite increased root growth in Norway spruce and Scots pine in nutrient-supplemented soil, their root systems contained similar nutrient concentrations on both sides of the split-root container. Thus, coniferous trees may respond to local nutrient supply by increased root proliferation, but the response varies depending on the species, and may only occur when trees are nutrient deficient. As a response to local nutrient enrichment, increases in root dry matter or root length may be better indicators of pre-existing nutrient deficiencies in conifers than increases in root nutrient concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.