Abstract

Photosystem II (PSII) activities in both samara and leaf of white elm (Ulmus pumila L.) were significantly inhibited by enhanced UV-B radiation (UVBR). UVBR disturbed both the donor and acceptor sides of PSII. The plastoquinone (PQ) pool size on the acceptor side, the trapped excited energy for complete reduction of QA, and the proportion of closed PSII reaction centers (RCs) increased, with PSII RCs being transformed into dissipative sinks for excitation energy under UVBR. However, samara and leaf responded to UVBR in different ways. A decrease in the F0 for leaf induced by UV-B radiation suggests the formation of fluorescence-quenching centers. An increase in the VI for leaf under UVBR might mean the accumulation of reduced QA and PQ. F0 and VI for samara showed opposite change pattern. Leaf has the mechanism of regulation of the amount of light reaching the RC through decreasing the number of light-harvesting chlorophyll molecules under UVBR while samara may be unable to regulate the light-harvesting capacity. PSII in samara was more susceptible to UVBR than that in leaf, with PIABS for samara decreasing more rapidly by a factor of 6.4 than that for leaf. Samara can recover more easily from UVBR-induced damage to PSII than the leaf.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.