Abstract

Hepatitis C virus (HCV) is a major cause of chronic hepatitis that can lead to cirrhosis and hepatocellular carcinoma. To study the effects of HCV protein expression on host cells, we established conditional expression of the full-length open reading frame (ORF) of an infectious cDNA clone of HCV (genotype 1a, H77 strain) in the nontransformed human hepatocyte line cell HH4 using the ecdysone receptor regulatory system. Treatment with the ecdysone analog ponasterone-A induced tightly regulated and dose-dependent full-length HCV ORF expression and properly processed HCV proteins. HCV Core, NS3, and NS5A colocalized in perinuclear regions and associated with the early endosomal protein EEA1. HCV ORF expression caused marked growth inhibition, increased intracellular reactive oxygen species, up-regulation of glutamate-l-cysteine ligase activity, increased glutathione level, and activation of nuclear factor kappaB. Although it was not directly cytotoxic, HCV ORF expression sensitized HH4 cells to Fas at certain concentrations but not to tumor necrosis factor-related apoptosis-inducing ligand. HCV ORF expression in HH4 cells up-regulated genes involved in innate immune response/inflammation and oxidative stress responses and down-regulated cell growth-related genes. Expression of HCV ORF in host cells may contribute to HCV pathogenesis by producing oxidative stress and increasing the expression of genes related to the innate immune response and inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.