Abstract

The contamination of heavy metals profoundly impacts plant metabolic processes and various physiological indicators, such as non-structural carbohydrates (NSC). However, a comprehensive understanding of how NSC in plants respond to heavy metal treatment and how different experimental setting and plant types affect the response of plant NSC is still lacking. Here, we compiled data of 2084 observations of NSC from 85 published studies and conducted a meta-analysis to investigate the responses of soluble sugars, starch, the ratio of soluble sugar to starch, and total non-structural carbohydrates (TNSC) to heavy metal treatment. Our results showed that, under heavy metal treatment, foliar soluble sugars, foliar TNSC, and the ratio of soluble sugars to starch in both foliage and root increased significantly by 21.6 %, 11.6 %, 55.9 %, and 65.1 %, respectively; and foliar starch, root starch, and root TNSC decreased significantly by 10 %, 23.3 %, and 11 %, respectively; while root soluble sugars remained unchanged. The treatment of heavy metals significantly diminished the biomass of foliage, above-ground, and root by 12.3 %, 29.5 %, and 34.3 %, respectively. The responses of foliar NSC to heavy metal treatment were strongly dependent on leaf habit, the duration and concentration of heavy metal treatment, and soil pH value. The magnitude of the response of NSC to heavy metals increased with the duration and concentration of heavy metal treatment. Furthermore, the types of heavy metals modulated the magnitude of the response of foliar NSC to heavy metal treatment. Overall, our findings provide valuable insights into the responses of plant NSC to heavy metal stress and contribute to a comprehensive understanding of this crucial aspect of plant physiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.