Abstract
When two identical sounds are presented from different locations with a short interval between them, the perception is of a single sound source at the location of the leading sound. This "precedence effect" is an important behavioral phenomenon whose neural basis is being increasingly studied. For this report, neural responses were recorded to paired clicks with varying interstimulus intervals, from several structures of the ascending auditory system in unanesthetized animals. The structures tested were the auditory nerve, anteroventral cochlear nucleus, superior olivary complex, inferior colliculus, and primary auditory cortex. The main finding is a progressive increase in the duration of the suppressive effect of the leading sound (the conditioner) on the response to the lagging sound (the probe). The first major increase occurred between the lower brainstem and inferior colliculus, and the second between the inferior colliculus and auditory cortex. In neurons from the auditory nerve, cochlear nucleus, and superior olivary complex, 50% recovery of the response to the probe occurred, on average, for conditioner and probe intervals of approximately 2 ms. In the inferior colliculus, 50% recovery occurred at an average separation of approximately 7 ms, and in the auditory cortex at approximately 20 ms. Despite these increases in average recovery times, some neurons in every structure showed large responses to the probe within the time window for precedence (approximately 1-4 ms for clicks). This indicates that during the period of the precedence effect, some information about echoes is retained. At the other extreme, for some cortical neurons the conditioner suppressed the probe response for intervals of up to 300 ms. This is in accord with behavioral results that show dominance of the leading sound for an extended period beyond that of the precedence effect. Other transformations as information ascended included an increased variety in the shapes of the recovery functions in structures subsequent to the nerve, and neurons "tuned" to particular conditioner-probe intervals in the auditory cortex. These latter are reminiscent of neurons tuned to echo delay in bats, and may contribute to the perception of the size of the acoustic space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.