Abstract

Pathogens can cause diseases and lead to massive mortalities of aquaculture animals and substantial economic loss. In this work, we studied the responses induced by Micrococcus luteus and Vibrio anguillarum in gill of mussel Mytilus galloprovincialis at protein and metabolite levels. Metabolic biomarkers (e.g., amino acids, betaine, ATP) suggested that both M. luteus and V. anguillarum induced disturbances in energy metabolism and osmotic regulation. The unique and some more remarkably altered metabolic biomarkers (threonine, alanine, aspartate, taurine, succinate) demonstrated that V. anguillarum could cause more severe disturbances in osmotic regulation and energy metabolism. Proteomic biomarkers (e.g., goose-type lysozyme 2, matrilin, ependymin-related protein, peptidyl-prolyl cis–trans isomerases) indicated that M. luteus caused immune stress, and disturbances in signaling pathways and protein synthesis. However, V. anguillarum mainly induced oxidative stress and disturbance in energy metabolism in mussel gills indicated by altered procollagen-proline dioxygenase, protein disulfide isomerase, nucleoside diphosphate kinases, electron transfer flavoprotein and glutathione S-transferase. This work confirmed that an integration of proteomics and metabolomics could provide an insightful view into the effects of pathogens to the marine mussel M. galloprovincialis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call