Abstract

BackgroundThe application of nanofertilisers in agriculture has been widely utilised due to their distinct characteristics and negative impacts of conventional chemical fertilisers. This study thus examined the influence of calcium nanoparticles (CaNPs) on soil composition vis-à-vis performance parameters in Moringa oleifera L exposed to water, 100 mg Ca(NO3)2kg−1 soil and 100, 75 and 50 mg CaNPs kg−1 soil. Soil morphology was determined with a scanning electron microscope coupled with energy dispersive x-ray (SEM-EDX) and elemental composition in both soils and M. oleifera roots determined with inductively coupled plasma-optical emission spectrometer (ICP-OES).ResultsThe CaNP-amended soils were more crystalline, more fertile and had reduced salinity. An increase in immobilisation percentage of heavy metals, improvement in physiological parameters (percentage germination, vigour indices, relative water contents, lengths of roots and shoots) and photosynthetic efficiency in M. oleifera were recorded.ConclusionThis study has demonstrated that CaNPs could improve soil composition for better plant performance and can act as nanofertilisers mobilising essential nutrients.Graphical abstract

Highlights

  • The application of nanofertilisers in agriculture has been widely utilised due to their distinct characteristics and negative impacts of conventional chemical fertilisers

  • Applications of metal nanoparticles have remarkably improved agricultural practices as nanofertilisers to promote plant growth and enhance nutritional quality, as nanopesticides to protect against phytopathogens and as immobilising/adsorbing agents for soil pollutants [8, 10,11,12,13,14]

  • Metal nanoparticles as soil conditioners and plant growth enhancers have been reported in some studies; some had stimulatory actions while some were phytotoxic

Read more

Summary

Introduction

The application of nanofertilisers in agriculture has been widely utilised due to their distinct characteristics and negative impacts of conventional chemical fertilisers. Applications of metal nanoparticles have remarkably improved agricultural practices as nanofertilisers to promote plant growth and enhance nutritional quality, as nanopesticides to protect against phytopathogens and as immobilising/adsorbing agents for soil pollutants [8, 10,11,12,13,14]. Metal nanoparticles as soil conditioners and plant growth enhancers have been reported in some studies; some had stimulatory actions while some were phytotoxic. Studies on stimulatory actions of metal nanoparticles showed improved antioxidant activities, increased germination percentage and longer roots and shoots whereas their phytotoxicity manifested in increased malondialdehyde level and reduced antioxidant enzyme activities [1, 9, 15, 16]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.