Abstract
Habitat fragmentation is a process involving splitting of continuous habitats into smaller, and more isolated habitat patches. To assess the effects of small-scale habitat patchiness and isolation without the confounding effect of habitat loss on benthic macrofauna, two field experiments were conducted in the Archipelago Sea, SW Finland. Using artificial seagrass units (ASUs) we contrasted continuous patches (“C”) with fragmented patches (“F”) of the same combined area as the continuous patches. The fragmentation treatment involved two isolation distances (0.5 and 3.0 m) between the ASUs (“F 0.5”) and (“F 3.0”). This design was repeated in two consecutive experiments where the patch area was 0.25 and 0.0625 m2, respectively. Mobile epifauna were allowed to colonize patches for 12 days in both experiments. In both experiments, the total epifaunal density was significantly higher in the “F 0.5” treatment than in the “C” treatment, and the three dominant taxa showed positive or neutral responses to the habitat configuration. No fragmentation effect on the number of species was detected in either of the experiments, but fragmentation had a negative effect on the epifaunal diversity (Shannon’s H′) in the experiment with the largest patch area. Epifaunal diversity was significantly lower in “F 3.0” treatment than in “C” or “F 0.5” treatments in the first experiment, indicating stronger effect of isolation instead of fragmentation per se. Edge effects were indirectly tested by comparing epifaunal densities with patch edge:area ratios. The results suggest that edge effects may have a more important role than patch size for the total densities of epifaunal taxa, and that small, isolated patches have equal or higher habitat value compared to larger fragments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.