Abstract

Auditory feedback can make reflexive responses on sustained vocalizations. Among them, the middle-frequency power of F0 (MFP) may provide a sensitive index to access the subtle changes in different auditory feedback conditions. Phonatory airflow temperature was obtained from 20 healthy adults at two vocal intensity ranges under four auditory feedback conditions: (1) natural auditory feedback (NO); (2) binaural speech noise masking (SN); (3) bone-conducted feedback of self-generated voice (BAF); and (4) SN and BAF simultaneously. The modulations of F0 in low-frequency (0.2 Hz-3 Hz), middle-frequency (3 Hz-8 Hz), and high-frequency (8 Hz-25 Hz) bands were acquired using power spectral analysis of F0. Acoustic and aerodynamic analyses were used to acquire vocal intensity, maximum phonation time (MPT), phonatory airflow, and MFP-based vocal efficiency (MBVE). SN and high vocal intensity decreased MFP and raised MBVE and MPT significantly. BAF showed no effect on MFP but significantly lowered MBVE. Moreover, BAF significantly increased the perception of voice feedback and the sensation of vocal effort. Altered auditory feedback significantly changed the middle-frequency modulations of F0. MFP and MBVE could well detect these subtle responses of audio-vocal feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.