Abstract

Biocover soils are known to be a good alternative material to mitigate CH4 emissions from landfills to the atmosphere. In this study, 16 treatments with four O2 concentrations (∼0%, 5%, 10% and 21%) and four CH4 concentrations (i.e. 1%, 10%, 20% and 50%) were conducted to estimate extracellular polymeric substances (EPS) production, methanotrophic activity and community in response to CH4 and O2 concentrations in waste biocover soil (WBS). When the CH4 concentration was saturated for CH4 oxidation in the WBS, the continuous exposure of CH4 above the saturated concentrations could not obviously enhance CH4 oxidation activity. In the WBS, extracellular protein (ECP) production was negatively related with the tested CH4 concentrations, while both ECP and extracellular polysaccharides (ECPS) productions were positively related with the tested O2 concentrations. Cloning and terminal restriction fragment length polymorphism analyses showed that type I methanotrophs (Methylocaldum, Methylococcaceae, Methylomicrobium and Methylobacter) and type II methanotrophs (Methylosinus) dominated in the WBS. Among them, Methylocaldum and/or Methylococcaceae were sensitive to low O2 concentrations of ∼0%. Methylobacter had propensity to grow at low O2 concentrations of ∼0% and 5%, while Methylosinus preferred environments with high concentrations of CH4 (⩾10%) and O2 (21%). In the tested five environmental variables of ECPS, O2, EPS, CH4 and ECP, only ECPS and O2 concentrations had significant effect on the methanotrophic communities. These results suggested that O2 concentration in landfill covers should be paid more attention to optimize and sustain CH4 oxidation for mitigating CH4 emission from landfills.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call