Abstract

Whilst the potent effects of NGF and laminin on developing neurons are well documented, relatively little is known about the effects of, or altered availability of or altered responsiveness to, these substances on the growth of adult neurons. We have therefore examined this question using explant cultures of sympathetic neurons from the superior cervical ganglion (SCG) of mature and aged rats. Explants were grown on substrata containing different doses of laminin, either with or without added NGF in culture medium containing FCS. Individually, laminin and NGF had relatively small effects on neurite outgrowth and length, which tended to be reduced in old neurons. In contrast, laminin in the presence of exogenous NGF exerted a powerful effect on nerve growth which was substantially greater than the sum of the effects of the individual factors. This synergy was evident in all experimental groups and was greatest in old explants at high doses of laminin, where growth was comparable to that of mature neurons. The dose-response curve of old neurons to laminin in the presence of added NGF indicated reduced responsiveness. These results suggest that variations in the availability of laminin and/or exogenous NGF, together with altered patterns of neuronal responsiveness, may contribute to impaired neuronal plasticity in old age.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.