Abstract
Arbuscular mycorrhizal fungi (AMF) and rhizobia play a pivotal role in enhancing crop productivity, shaping microbial community structure, and improving soil quality, making them key components for sustainable ecosystem development. The symbiotic relationship between AMF and rhizobia is crucial for facilitating efficient biological nitrogen fixation and nutrient absorption, thereby reducing the dependence on chemical fertilizers and promoting sustainable agricultural practices. The findings of various studies, however, indicate that soil environment can impede the symbiotic relationship between AMF and rhizobia. We conducted a comprehensive meta-analysis of 158 articles from 1980 to 2022 to explore the synergistic interactions in legume–AMF–rhizobium systems and the potential mechanisms underlying this synergism. Our findings revealed that the inoculation with AMF and/or rhizobia significantly (p < 0.001) increased legume plant nitrogen content, phosphorus content, shoot biomass, yield, AMF colonization rate, and the number and weight of nodules compared to uninoculated controls (effect size d > 0). Moreover, there was a substantial synergistic effect between AMF and rhizobia (p < 0.001). Nevertheless, soil salinity stress, drought stress, and pH stress could hinder the positive effects of inoculation treatments, possibly due to the plant trade-off strategies under abiotic stress conditions. This research may potentially lead to new solutions for sustainable agricultural systems amidst the challenges posed by global climate change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.