Abstract
BackgroundThe non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) are important energy source or nutrients for all plant growth and metabolism. To persist in shaded understory, saplings have to maintain the dynamic balance of carbon and nutrients, such as leaf NSCs, C, N and P. To improve understanding of the nutrient utilization strategies between shade-tolerant and shade-intolerant species, we therefore compared the leaf NSCs, C, N, P in response to shade between seedlings of shade-tolerant Schima superba and shade-intolerant Cunninghamia lanceolate. Shading treatments were created with five levels (0, 40, 60, 85, 95% shading degree) to determine the effect of shade on leaf NSCs contents and C:N:P stoichiometry characteristics.ResultsMean leaf area was significantly larger under 60% shading degree for C. lanceolata while maximum mean leaf area was observed under 85% shading degree for S. superba seedlings, whereas leaf mass per area decreased consistently with increasing shading degree in both species. In general, both species showed decreasing NSC, soluble sugar and starch contents with increasing shading degree. However shade-tolerant S. superba seedlings exhibited higher NSC, soluble sugar and starch content than shade-intolerant C. lanceolate. The soluble sugar/starch ratio of C. lanceolate decreased with increasing shading degree, whereas that of S. superb remained stable. Leaf C:N ratio decreased while N:P ratio increased with increasing shading degree; leaf C:P ratio was highest in 60% shading degree for C. lanceolata and in 40% shading degree for S. superba.ConclusionS. superba is better adapted to low light condition than C. lanceolata through enlarged leaf area and increased carbohydrate reserves that allow the plant to cope with low light stress. From mixed plantation viewpoint, it would be advisable to plant S. superba later once the canopy of C. lanceolata is well developed but allowing enough sunlight.
Highlights
Non-structural carbohydrates (NSCs, mainly composed of soluble sugars and starch) are important energy source for all plant growth and metabolism [1, 2]
Soluble sugar content was higher for C. lanceolata seedlings exposed to 60, 40 and 0% shading degree than 95 and 85% shading degree, whereas it was higher for S. superba seedlings exposed to 40 and 0% shading degree than 95, 85 and 60% shading degree (Fig. 1a)
Starch content was higher for S. superba than C. lanceolata across all shade levels, and the highest starch content was observed in seedlings exposed to 40% shading degree in both species (Fig. 1b)
Summary
Non-structural carbohydrates (NSCs, mainly composed of soluble sugars and starch) are important energy source for all plant growth and metabolism [1, 2]. Soluble sugars are photosynthesis products and are used to meet plant current requirements and osmotic regulation [3]. Carbon (C), nitrogen (N) and phosphorus (P) are the basic elements for plant growth and development. The concentrations of C, N, P in plants reflect nutrient uptake, utilization efficiency and adaptation to the environment stress. The non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) are important energy source or nutrients for all plant growth and metabolism. To persist in shaded understory, saplings have to maintain the dynamic balance of carbon and nutrients, such as leaf NSCs, C, N and P. Shading treatments were created with five levels (0, 40, 60, 85, 95% shading degree) to determine the effect of shade on leaf NSCs contents and C:N:P stoichiometry characteristics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.