Abstract

Based on the elemental composition of major biochemical molecules associated with different biological functions, the 'growth rate hypothesis' proposed that organisms with a higher growth rate would be coupled to lower C:N, especially lower C:P and N:P ratios. However, the applicability of the growth rate hypothesis for plants is unclear, especially for shrubs growing under different water supply. We performed an experiment with eight soil moisture levels (soil water content: 4%, 6%, 8%, 13%, 18%, 23%, 26% and 28%) to evaluate the effects of water availability on leaf C:N:P stoichiometry in the shrub Zygophyllum xanthoxylum. We found that leaves grew slowly and favored accumulation of P over C and N under both high and low water supply. Thus, leaf C:P and N:P ratios were unimodally related to soil water content, in parallel with individual leaf area and mass. As a result, there were significant positive correlations between leaf C:P and N:P with leaf growth (u). Our result that slower-growing leaves had lower C:P and N:P ratios does not support the growth rate hypothesis, which predicted a negative association of N:P ratio with growth rate, but it is consistent with recent theoretical derivations of growth-stoichiometry relations in plants, where N:P ratio is predicted to increase with increasing growth for very low growth rates, suggesting leaf growth limitation by C and N rather than P for drought and water saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.