Abstract

Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.