Abstract

Under free field stimulation conditions, we studied the responses of inferior collicular neurons of the FM bat, Eptesicus fuscus, to pulse trains with varied pulse amplitudes. Each pulse train consisted of 7 pulses of 4 ms delivered at 24 ms interpulse-intervals (i.e. 42 pulses/s). For a control pulse train, all pulse amplitudes were equal to a neuron's best amplitude which, when delivered in single pulses, elicited maximal number of impulses from the neuron. The amplitudes of individual pulses of the remaining pulse trains were linearly increased or decreased at a slope of 0, 14, 28, 42, 56 and 69 dB/s. All 56 inferior collicular neurons discharged to pulse trains were of two main types. Type I ( N43, 77%) neurons discharged to each pulse within a train while type II ( N11, 20%) neurons discharged to the first pulse of a train stimulus only. Discharge patterns of the remaining ( N2, 3%) neurons changed between type I and type II when stimulated with different pulse trains. The number of impulses discharged by a neuron varied with different pulse trains. In addition, the number of impulses discharged to each pulse by type I neurons also varied among individual pulses within the train. Only 14 neurons (25%) discharged maximally to the control pulse train. Responses of the remaining neurons to other pulse trains were either 30%–120% larger than ( N17, 30%) or within 30% ( N25, 45%) of the control pulse train response. Furthermore, half of 56 neurons selectively discharged to a most preferred pulse train with a response magnitude which was at least 50% larger than the response to the least preferred pulse train. Possible mechanisms underlying the different discharge patterns are discussed in terms of a neuron's recovery cycle, minimum threshold and inhibitory period relative to the temporal characteristics (pulse repetition rate and amplitude) of the pulse trains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.