Abstract

BackgroundHuman adipose-derived mesenchymal stem cells (ADMSCs) may be ideal source of cells for intervertebral disc (IVD) regeneration, but the harsh chemical microenvironment of IVD may significantly influence the biological and metabolic vitality of ADMSCs and impair their repair potential. This study aimed to investigate the viability, proliferation and the expression of main matrix proteins of ADMSCs in the chemical microenvironment of IVD under normal and degeneration conditions.MethodsADMSCs were harvested from young (aged 8-12 years, n = 6) and mature (aged 33-42 years, n = 6) male donors and cultured under standard condition and IVD-like conditions (low glucose, acidity, high osmolarity, and combined conditions) for 2 weeks. Cell viability was measured by annexin V-FITC and PI staining and cell proliferation was measured by MTT assay. The expression of aggrecan and collagen-I was detected by real-time quantitative polymerase chain reaction and Western blot analysis.ResultsIVD-like glucose condition slightly inhibited cell viability, but increased the expression of aggrecan. In contrast, IVD-like osmolarity, acidity and the combined conditions inhibited cell viability and proliferation and the expression of aggrecan and collagen-I. ADMSCs from young and mature donors exhibited similar responses to the chemical microenvironments of IVD.ConclusionIVD-like low glucose is a positive factor but IVD-like high osmolarity and low pH are deleterious factors that affect the survival and biological behaviors of ADMSCs. These findings may promote the translational research of ADMSCs in IVD regeneration for the treatment of low back pain.

Highlights

  • Human adipose-derived mesenchymal stem cells (ADMSCs) may be ideal source of cells for intervertebral disc (IVD) regeneration, but the harsh chemical microenvironment of IVD may significantly influence the biological and metabolic vitality of ADMSCs and impair their repair potential

  • Effects of chemical microenvironments on the viability of ADMSCs By flow cytometry analysis we observed a slight increase in the number of apoptotic cells under IVD-like low glucose condition, but a decrease in the number of vital cells and an increase in the number of apoptotic and necrotic cells under IVD-like osmolarity, IVD-like pH as well as combined IVD-like conditions (Figure 2 and 3)

  • Under high osmolarity and low pH conditions, the proliferation of both age groups was strongly inhibited after 1 week (49.63% young, 55.94% mature under osmolarity condition, both P < 0.001; 65.09% young, 56.63% mature under pH condition, both P < 0.001) and 2 weeks (23.45% young, 24.85% mature under osmolarity condition, both P < 0.0001; 40.11% young, 34.66% mature under pH condition, both P < 0.001)

Read more

Summary

Introduction

Human adipose-derived mesenchymal stem cells (ADMSCs) may be ideal source of cells for intervertebral disc (IVD) regeneration, but the harsh chemical microenvironment of IVD may significantly influence the biological and metabolic vitality of ADMSCs and impair their repair potential. This study aimed to investigate the viability, proliferation and the expression of main matrix proteins of ADMSCs in the chemical microenvironment of IVD under normal and degeneration conditions. Low back pain is a multifactorial disease, and intervertebral disc (IVD) degeneration plays an important role in its etiology [2,3]. Current treatments for the diseases resulting from IVD degeneration are mainly aimed at disc cells constitute only 1% of the adult disc tissue by volume, they play a significant role in matrix synthesis and the maintenance of a healthy IVD tissue [6]. Autologous disc cells may be an ideal cell source, but they have many practical limitations in the clinical setting: (1) The procurement of autologous disc cells, whether accomplished by imageguided aspiration or open surgical collection, is an invasive process; (2) The harvesting of disc cells from a healthy IVD can potentially accelerate IVD degeneration; (3) Disc cells from a degenerated disc may not be functionally ideal for re-implantation [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call