Abstract

Regional warming and atmospheric ozone (O3 ) pollution are two of the most important environmental issues, and commonly coexist in many areas. Both factors have an intense impact on plants. However, little information is available on the combined and interactive effects of air warming and elevated O3 concentrations on physiological characteristics of plants. To explore this issue, we studied variations in growth, photosynthesis and physiological characteristics of leaves of Acer ginnala seedlings exposed to control (ambient temperature and O3 ), increasing air temperature (ambient temperature+2°C), elevated O3 (ambient O3 concentration+40ppb) and a combination of the two abiotic factors at different phenological stages by using open-top chambers. The results showed that increasing air temperature had no significant effect on growth, but increased photosynthesis and antioxidant enzyme activity at the leaf unfolding and defoliation stages. In contrast, elevated O3 decreased growth and photosynthesis and caused oxidative stress injury in A. ginnala leaves at each phenological stage. The combination of increasing air temperature and elevated O3 improved growth and net photosynthetic rates of tested plants and alleviated the oxidative stress compared to O3 alone. Our findings demonstrated that moderate warming was beneficial to A. ginnala at leaf unfolding and defoliation stages, and alleviated the adverse effects of O3 stress on growth, photosynthesis and the antioxidant system. These results will provide a theoretical reference and scientific basis for the adaptation and response of A. ginnala under regional air warming and atmospheric O3 pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call