Abstract

Aim. To investigate the physiological and agrobiological responses of grapevines on different systems of training systems in row plantations depending on the planting density and the possibility of adjusting plants for non-irri- gated crop cultivation under cold semiarid climate. Methods. The field two-way experiment of 2 × 4 was applied to study the effect of two planting density variants (3 × 1.5 m; 3 × 1 m) and four vine training systems (when the horizontal cordon is located at the height of 0.4 m, 0.8 m, 1.2 m, 1.6 m) on the parameters of the leaf area, leaf index, water loss through transpiration, activity of the photosynthetic apparatus of leaves and the yield of Zahrei wine grape cultivar (Vitis vinifera L.). The experiment data were processed using the analysis of variance. Results. The increase in the density of vine row plantations per area units from 3 × 1.5 m to 3 × 1 m enlarges the total leaf area, the exposed leaf area, water loss through transpiration, and yield weight, but these indices decrease in the evaluations per plant. The responses of grapevine to the training systems are similar and independent from the ex- perimental variants of planting density. At the height of the cordon of 0.4 and 0.8 m, the vertical shoot positioning enhances the potential of the photosynthetic capacity of the plantations, but this potential is realized only during the years with lower water deficit for plants. Free-growing shootings on the cordons, located at the height of 1.2 m, form the canopy architecture with relatively low water loss through transpiration which has a positive effect on the activity of the photosynthetic apparatus and yield, especially in dry years. The downward shoot positioning on the cordons of 1.6 m decreases the leaf area of the vines and creates the canopy architecture with increased transpiration which enhances the effect of the water deficit and has a negative effect on the productivity of plants. Conclusions. The agronomic methods of planting and training systems for grapevines ensure the management of the character of spatial shoot location, the formation of certain canopy architecture, and setting the parameters of the leaf area; their optimization mitigates the negative effect of water deficit and provides for adapting the plants for non-irrigated crops under semiarid climate. The positive effect of compacting plantations on crop yield was determined without irrigation in semiarid environments. The variant of planting density of 3 × 1 m decreases the yield on the vines on average by 12.1–31.0 %, as compared to the variant of 3 × 1.5 m. Yet, more dense plantations are remarkable for their yield, which is 18.5–61.3 % higher depending on the training system for vines. Under dry conditions, the most efficient system is the training system with the formation of the horizontal cordon at the height of 1.2 m and free-growing shoots. The system optimizes the leaf area density, and forms the canopy architecture with rather low water loss through transpiration which has a positive effect on the activity of the photosynthetic apparatus of leaves during droughts. Under free growth, the yield of the plantations increases by 4.3–12.3 % on average as compared to the vertical shoot positioning and by 21.3 % – under their downward positioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call