Abstract

Abstract:Nitrogen (N) availability is a major control on fine-root growth and distribution with depth in forest soils. We investigated fine-root dynamics in response to N addition in a montane rain forest with N-limited above-ground production. Control and N-fertilized (125 kg urea-N ha−1 y−1) treatments were laid out in a paired-plot design with four replicates (each 40 × 40 m). During 1.5 y of treatment, fine root-biomass, necromass and production were assessed by sequential coring at three soil depths (organic layer, 0–10 cm and 10–20 cm mineral soil), whereas fine-root redistribution with depth was assessed by ingrowth cores. Total fine-root biomass, necromass and production in the controls were 458 ± 21 g m−2, 101 ± 9 g m−2 and 324 ± 33 g m−2 y−1, respectively. No significant difference at any depth was detected under N fertilization. Fine-root biomass in the organic layer decreased over time under N addition. At 10–20 cm in the mineral soil, fine-root biomass in ingrowth cores increased significantly after 1.5 y of N fertilization compared with the control. The increased available N may have induced the change in fine-root distribution to explore the deeper mineral soil for other nutrients which may cause additional limitation to above-ground production once N limitation is alleviated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call