Abstract
This study investigates early adaptive responses of fast-twitch muscle to increased contractile activity by low-frequency stimulation. Changes in metabolite levels and activities of regulatory enzymes of carbohydrate metabolism were investigated in rabbit tibialis anterior muscle after 24 h of stimulation. In addition, changes elicited during a 5-min lasting acute stimulation experiment were compared between 24-h-prestimulated and contralateral control muscles. Stimulation for 5 min reduced energy-rich phosphates and glycogen, and increased lactate in the control muscle. A transient elevation of fructose 2,6-bisphosphate demonstrated that activation of phosphofructokinase 2 was an immediate response to contractile activity. Prestimulated muscles displayed nearly normal values for ATP, phosphocreatine and glycogen, and did not augment lactate. Increased activities of hexokinase and phosphofructokinase 2 and permanently elevated levels of fructose 2,6-bisphosphate pointed to enhanced glycolysis with glucose as the main fuel in the prestimulated muscle. Isometric tension of the control muscle decreased rapidly a few minutes after the onset of stimulation. In the prestimulated muscles, tension was almost stable, but amounted to only 30%-40% of the initial tension of the control muscle. In view of the fibre type distribution of rabbit tibialis anterior, these findings suggested that a large fibre fraction of the prestimulated muscle, possibly the glycolytic type IID fibres, did not contract. Therefore, the possibility must be considered that the metabolite pattern of the 24-h-stimulated muscle primarily reflected metabolic activities of the contracting, less fatigable fibres, most likely type IIA and type I fibres.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.