Abstract

The effect of salinity (100 mM NaCl) on ethylene metabolism in the early phase of vegetative development of several plant species has been investigated. The effects of saline treatment on shoot and root growth, ranged in sensitivity with respect to species: pepper (Capsicum annum L. cv Pairal) > tomato (Lycopersicon esculentum Mill. cv Malpica) > broccoli (Brassica oleraceae L. var. Italica Plenk. cv Marathon F1) ≅ lettuce (Lactuca sativa var. longifolia Lam. cv Inverna) ≅ melon (Cucumis melo L. cv Ruano F1, Roche type) > bean (Phaseolus vulgaris L. cv. Gator Green 15) ≅ spinach (Spinacia oleracea L. cv Boeing) > beetroot (Beta vulgaris L. var. crassa (Alef.) J. Helm. cv Detroit). After saline treatment, ethylene production increased 4.2-fold in pepper shoots. Significant increases were also found in shoots of tomato, broccoli and bean. In contrast, salinity decreased shoot ethylene production rate in melon, spinach, and beetroot. In roots, the general effect of salinity was a decrease in ethylene production, especially in broccoli and bean, except in tomato root, in which a sharp increase in ethylene production occurred. In general, saline treatment increased total ACC concentration in both shoot and root in most of the plant species examined, which was related to plant sensitivity to salinity. For example, pepper shoot was the most sensitive to saline treatment, showing the highest fresh weight inhibition and the highest increase in total ACC concentration (8.5-fold), while, beetroot was less affected by salinity and showed no effect on total ACC concentration in response to saline treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.