Abstract

Here, we examined the responses of the epiphytic lichens Alectoria sarmentosa and Platismatia glauca to increased atmospheric nitrogen (N) deposition in an old-growth boreal spruce forest, to assess the sensitivity of these species to N and define their critical N load. Nitrogen deposition was simulated by irrigating 15 trees over a 3 yr period with water and isotopically labeled NH(4)NO(3), providing N loads ranging from ambient to 50 kg N ha(-1) yr(-1) . Thallus N concentration increased in both species with increasing N load, and uptake rates of both NH(4)(+) and NO(3)(-) were similar. Photobiont concentration increased linearly with increased N in both species, saturating in A. sarmentosa in the third year at the highest N loads (25 and 50 kg ha(-1) yr(-1)). The simulated N deposition decreased the phosphorus (P) concentration in A. sarmentosa, and increased the N:P ratio in both species. Significant responses in lichen chemistry were detected to inputs of 12.5 kg N ha(-1) yr(-1) or higher, suggesting that resources other than N limit lichens at higher N loads. However, the data also suggest that N saturation may be cumulative over time, even at low N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.