Abstract

Symbiotic fungi associated with tree-killing bark beetles can alter host-tree physiology with consequences for tree survival, and symbiont genetic variation and environmental variability may impact these interactions. Here, we test whether multiple genetically distinct isolates of a symbiotic fungus (Leptographium abietinum (Peck) M.J. Wingf.) associated with North American spruce beetle (Dendroctonus rufipennis (Kirby, 1837)) vary in their ability to manifest defensive responses consistent with disease symptoms in seedlings of Engelmann spruce (Picea engelmannii Parry ex Engelm.), a primary host-tree species for the beetle–fungus complex in North America. Our experiments incorporate variation in both host-tree water availability and host defenses (phloem monoterpene concentration). Three central findings emerged: (i) isolates varied considerably in their effects on host trees — inoculation with L. abietinum isolates from Colorado caused significantly larger phloem lesions than isolates from Wyoming, though all isolates caused phloem oxidation; (ii) neither water availability nor spruce phloem monoterpene concentrations impacted lesion formation; and (iii) both inoculation with L. abietinum and water deficit inhibited the formation of callus tissue at wound sites. We conclude that L. abietinum isolates vary in their virulence and that inoculation is not lethal but may benefit beetles by altering tree defensive responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call