Abstract

Agricultural soil is often subjected to waterlogging after heavy rainfalls, resulting in sharp and explosive increases in the emission of nitrous oxide (N2O), an important greenhouse gas primarily released from agricultural soil ecosystems. Previous studies on waterlogged soil examined the abundance of denitrifiers but not the composition of denitrifier communities in soil. Also, the PCR primers used in those studies could only detect partial groups of denitrifiers. Here, we performed pyrosequencing analyses with the aid of recently developed PCR primers exhibiting high coverage for three denitrification genes, nirK, nirS, and nosZ to examine the effect of short-term waterlogging on denitrifier communities in soil. We found that microbial communities harboring denitrification genes in the top 5 cm of soil distributed according to soil depth, water-soluble carbon, and nitrate nitrogen. Short-term waterlogging scarcely affected abundance, richness, or the alpha-diversities of microbial communities harboring nirK, nirS, and nosZ genes, but significantly affected their composition, particularly in microbial communities at soil depths of 0 to 1 cm. Our results indicated that the composition of denitrifying microbial communities but not the abundance of denitrifiers in soil was responsive to short-term waterlogging of an agricultural soil ecosystem.

Highlights

  • Nitrous oxide (N2O) is a greenhouse gas that is mainly released from soil ecosystems[1]

  • QPCR was performed to examine the abundance of denitrification genes in the soil samples (Fig. 1)

  • To determine the importance of soil depth directly, we presented the beta-diversities as nonmetric multidimensional scaling plots (Fig. 6)

Read more

Summary

Introduction

Nitrous oxide (N2O) is a greenhouse gas that is mainly released from soil ecosystems[1]. Substantial efforts have been devoted to developing primers for denitrification genes in order to detect more microbial taxa[21,22,23,24,25,26,27,28,29,30]. Pyrosequencing techniques, as well as recently developed PCR primers, to investigate communities of microbes harboring nirK, nirS, and nosZ genes in soil from an upland converted paddy field that exhibited active N2O emission immediately following heavy rainfalls

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.