Abstract

Antibiotics are omnipresent and pseudo-persistent in the environment. Yet, their potential ecological risks under repeated exposure, which is more environmentally relevant, are understudied. Therefore, this study used ofloxacin (OFL) as the probe chemical to investigate the toxic effects of different exposure scenarios―single dose of high concentration (4.0 µg/L) and multiple additions of low concentrations―towards the cyanobacterium Microcystis aeruginosa. Flow cytometry was employed to measure a collection of biomarkers, including endpoints related with biomass, single cell properties and physiological status. Results showed that the single dose of the highest OFL level inhibited cellular growth, chl-a content and cell size of M. aeruginosa. In contrast, OFL induced stronger chl-a autofluorescence and higher doses tended to have more remarkable effects. Repeated low OFL doses can more significantly increase the metabolic activity of M. aeruginosa than a single high dose. Viability and cytoplasmic membrane were not affected by OFL exposure. Oxidative stress was observed for the different exposure scenarios, with fluctuating responses. This study demonstrated the different physiological responses of M. aeruginosa under different OFL exposure scenarios, providing novel insights into the toxicity of antibiotics under repeated exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.