Abstract
Based on future climate change projections offered by IPCC, the responses of yields and water use efficiencies of wheat and maize to climate change scenarios are explored over the North China Plain. The climate change projections of 21st century under A2A, B2A and A1B are from HadCM3 global climate model. A climate generator (CLIGEN) is applied to generate daily weather data of selected stations and then the data is used to drive CERES-Wheat and Maize models. The impacts of increased temperature and CO 2 on wheat and maize yields are inconsistent. Under the same scenario, wheat yield ascended due to climatic warming, but the maize yield descended. As a more probable scenario, climate change under B2A is moderate relative to A2A and A1B. Under B2A in 2090s, average wheat yield and maize yield will respectively increase 9.8% and 3.2% without CO 2 fertilization in this region. High temperature not only affects crop yields, but also has positive effect on water use efficiencies, mainly ascribing to the evapotranspiration intensification. There is a positive effect of CO 2 enrichment on yield and water use efficiency. If atmospheric CO 2 concentration reaches nearly 600 ppm, wheat and maize yields will increase 38% and 12% and water use efficiencies will improve 40% and 25% respectively, in comparison to those without CO 2 fertilization. However, the uncertainty of crop yield is considerable under future climate change scenarios and whether the CO 2 fertilization may be realized is still needed further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.