Abstract
There is a growing concern about the potential adverse effects of high dose folic acid (FA) supplementation before and during pregnancy. FA metabolism generates S-adenosyl methionine (SAM) which is an important cofactor of epigenetic programming. We sought to assess the impact of a large dose of SAM on early embryo development. In vitro cultured bovine embryos were treated with SAM from the eight-cell stage to the blastocyst stage. In addition to the phenotype, the genome-wide epigenetic and transcription profiles were analyzed. Treatment significantly improved embryo hatching and caused a shift in sex ratio in favor of males. SAM caused genome-wide hypermethylation mainly in exonic regions and in CpG islands. Although differentially expressed genes were associated with response to nutrients and developmental processes, no correspondence was found with the differentially methylated regions, suggesting that cellular responses to SAM treatment during early embryo development may not require DNA methylation-driven changes. Since bovine embryos were not indifferent to SAM, effects of large-dose FA supplements on early embryonic development in humans cannot be ruled out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.