Abstract
The occurrence of antibacterial agents has received increasing concern due to their possible threats to human health. However, the effects of antibacterial residues on the evolution and dynamics between bacteria and bacteriophages in wastewater treatment systems have seldom been researched. Especially for phages, little is known about their response to antimicrobial exposure. In this study, two identical anoxic-aerobic wastewater treatment systems were established to evaluate the responses of bacterial and phage communities to long-term exposure to antimicrobial agents. The results indicated simultaneous exposure to combined antimicrobials significantly inhibited (p < 0.05) the abundance of phages and bacteria. Metagenomic sequencing analysis indicated the community of bacteria and phages changed greatly at the genus level due to combined antibacterial exposure. Additionally, long-term exposure to antimicrobial agents promoted the attachment of receptor-binding protein genes to Klebsiella, Escherichia and Salmonella (which were all members of Enterobacteriaceae). Compared to that in the control system, the numbers of receptor-binding protein genes on their possible phages (such as Lambdalikevirus and P2likevirus) were also obviously higher when the microorganisms were exposed to antimicrobials. The results are helpful to understanding the microbial communities and tracking the relationship of phage-bacterial host systems, especially under the pressure of antimicrobial exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.