Abstract

LTP treatment was applied to induce a high-content alpha-linolenic acid (ALA) strain (C-12) from Chlorella sp. L166, the ALA content of C-12 was increased by 48.37%. The mechanism of LTP induction were examined. The results showed that LTP could facilitate pH change, induce malondialdehyde (MDA) production, cause protein leakage, and destroyed the microalgae cells. The genes of C-12 encoding pyruvate dehydrogenase (E2) were up-regulated 2.47-fold, and acetyl-CoA carboxylase (ACCase) down-regulated 0.48-fold compared to the wild type, these changed in the direction of ALA accumulation. Furthermore, the enzymes in DNA replication were significantly up regulated. Take ALA and biomass accumulation into account, LTP technology had a positive effect on ALA accumulation. Global view of metabolic variation also suggested that C-12 had an excellent adaptability to the changes of pH and peroxidation of LTP production. C-12 could be a promising ALA source of alternative materials for it do not compete with land.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.